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This article presents the results of an investigation of ground antenna pointing errors 
which are caused by fluctuations of the receiver AGC signal due to thermal noise and a 
spinning spacecraft. Transient responses and steady-state errors and losses are estimated 
using models of the digital Conscan (conical scan) loop, the FFT, and antenna characteris- 
tics. Simulation results are given for the on-going Voyager mission and for the upcoming 
Galileo mission, which includes a spinning spacecraft. The simulation predicts a I - s m a  
pointing ewor o f  0.5 to 2.0 mdeg for Voyager, assuming an AGC loop SNR of 35 to 
30 dB with a scan period vatying from 128 to 32 sec, respectively. This prediction is in 
agreement with the DSS 14 antenna Conscan performance of 1.7 mdeg for 32-sec scans 
as reported in earlier studies. The simulation for Galileo predicts I-mdeg ewor with a 
128-sec scan and 4-mdeg with a 32-sec scan under similar AGC conditions. 

1. Introduction 
In order to reduce the pointing error of the DSN ground 

antennas, a technique called Conscan has been successfully 
used for many years. In Conscan, angle tracking is accom- 
plished by scanning the antenna around boresight in a circular 
pattern with constant angular offset, called the scan radius. 
The basic theory of Conscan is given in [ l ]  . In the present 
implementation of the Conscan technique, the downlink signal 
is processed by a Fast Fourier Transform (FFT) algorithm. 

In this article, the impact of downlink AGC fluctuations 
due to  thermal noise and a spinning spacecraft on the pointing 
error of a ground antenna is investigated. In Section I1 the 
Conscan process is modeled as a digital phase-locked loop com- 
bined with the FFT algorithm. This analysis is subdivided into 
the following sections: 

A. Modeling the downlink signal 

B. Algorithm for estimating the pointing error 

C. Impact of spacecraft motion on the pointing error 

D. Impact of AGC SNR on the pointing error 

E. Conscan closed-loop model 

F. Pointing jitter and pointing loss 

G. Transient response 

Section I11 presents a computer simulation of the Conscan 
model. Predicted performance in terms of steady-state and 
transient responses, as well as time constants, are given as a 
function of loop gain, scan period, and signal-to-noise ratio. 
Specific topics discussed are: 

246 



A. Simulation model 

B. Simulation results-choice of loop gain and scan period 

C. Simulation versus actual performance for Voyager 

D. Predicted performance for Galileo 

E. Simulation results versus predicted performance 

II. Analysis 
A. Modeling of the Downlink Signal 

The Conscan technique uses AGC samples of the ground re- 
ceiver in order to  estimate the ground antenna pointing angle. 
In general, the AGC samples are perturbed by several causes: 
by deliberate ground antenna scanning about its boresight, by 
thermal noise in the AGC loop, by spacecraft antenna mis- 
pointing, and by other factors such as changes in gain and 
weather conditions. 

In our analysis, we first will assume that the AGC loop 
operates at very high SNR so that the AGC fluctuations due to  
thermal noise can be neglected. The effect of thermal noise 
will be addressed later in this analysis. 

Let P, be the average carrier power reaching the ground 
receiver when the receiving antenna is perfectly pointed and 
let P ( t )  be the instantaneous pointing offset of the receiving 
antenna. Then, with imperfect ground antenna pointing, the 
signal power reaching the ground receiver will be 

Where l r (* )  represents the power loss due to  pointing offset of 
the receiving antenna (a negative number in dB). 

When a spinning spacecraft is tracked, r ( t )  will experience 
periodic fluctuations of the form 

M 

i= 1 

where K i  represents the maximum power deviation about the 
mean (in units of dB) at the frequency wi (which will be some 
multiple of the spacecraft’s spin rate). Both K i  and wi are 
determined by the spacecraft’s antenna gain pattern and 
dynamics. 

The instantaneous pointing offset of the ground antenna, 
according to  [ 11 , can be expressed by the following equation 

J 

(3) 
where 

R = scan radius 

8, = pointing error in elevation angle 

Ox = pointing error in cross-elevation angle 

wT = 2n/T, where T i s  the Conscan period 

For small pointing offsets, the pointing loss due to ground 
antenna offset can be approximated by the least square fitting 
of a parabola to  the antenna gain pattern. In our analysis we 
let 

where K ,  is a constant. 

Combining the effects of scanning the ground antenna and 
a spinning spacecraft, the downlink AGC signal will be of the 
form 

In Conscan implementation, the received AGC signal 
power, r ( t ) ,  is sampled every I seconds and stored in a one- 
dimensional array. Inserting Eqs. (3) and (4) into Eq. ( 5 )  and 
making T = IN and r = Zj, we obtain the downlink AGC signal 
at the sampling instants, namely, 

t 2 K r R  [ e x COS - + e  e ’  sin (711 - 

+ [ z K i  cos (ai Ij + @> 1 
where the subscript j refers to  the j th  sample of a scan cycle, 
j = 0, . . . , N - I .  Subscript i refers to the i th  contribution to 
the signal. The variables @i are random phases generated by a 
spinning spacecraft (for example, by its wobble and nutation). 
In general the spacecraft’s spin rate is faster than the scan rate 
and should not be a multiple of the later (otherwise the scan 
rate must be changed accordingly). In t h s  case, the phases Gi 
will be approximately uniformly distributed in the (0, 2n) 
interval. P, as well as Ki (i = 1, . . . , M), R, e,, and 0, are 
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Imaginary part assumed to be constant during many scan periods. Equa- 
tion (6) can be written as follows 

r .  = P + c . t n .  (7) I I 1  

where P represents the terms contained in the first pair of 
square brackets of Eq. (61, which correspond to the dc com- 
ponent; ci represents the terms contained in the second pair of 
square brackets, which include the signal variation produced 
by scanning the ground antenna in a circular pattern, where 
Ox and 0, are the pointing errors that we want to  correct; and 
ni represents the terms inside the third pair of square brackets, 
which are the signal fluctuations produced by the spinning 
spacecraft. 

6. Algorithm for Estimating the Pointing Error 

In the present implementation of the Conscan technique, 
at the end of a scan period, N AGC samples are Fourier trans- 
formed with an FFT algorithm. The antenna pointing errors 
are estimated from the first component of the FFT (see 
Fig. 1). Since the FFT is just a fast implementation of the 
Discrete Fourier Transform, we will apply the theory of DFT 
to estimate the impact of a spinning spacecraft on the Conscan 
signal. 

Let Dk be the kth component of the Discrete Fourier 
Transform operator defined by 

We rewrite this equation as follows 

D k ( r )  R ( k )  = RR(k)  t iRI(k) 

where R, ( k )  and R,(k) are the real and imaginary parts of the 
kth component of the DFT, k = 0, 1 ,  . . . , N-1. Carrying out 
the above DFT operation on Eq. (6) we obtain 

Real part 

NJO) = 0 for k = 0 

RJk)  = KrRBe + N I ( l )  for k = 1 (1 1) 

NI ( k )  otherwise i 
where P equals the sum of terms in the first pair of square 
brackets in Eq. (6), whose value is of no interest in our analy- 
sis. As we see from Eqs. (10)  and ( l l ) ,  Ox and 0, can be esti- 
mated from RR ( 1 )  and R I ( l ) ,  namely, 

A R,(U e, =- 
KrR 

R I ( l )  
e, =-  

KrR 

(12)  

NR ( 1 )  and NI ( 1 )  result from the modulation of the downlink 
signal produced by a spinning spacecraft. Since the above 
terms superimpose to the terms containing 8, and 8, (see 
Eqs. 10 and l l ) ,  they have the effect of an additive noise 
w h c h  corrupts the estimation of the ground antenna pointing 
error. In what follows, the impact of N R ( l )  and N I ( l )  on 
and will be investigated. 

C. Impact of a Spinning Spacecraft on the Pointing 
Error 

We begin by taking the DFT on ni, the terms inside the 
third pair of square brackets in Eq. (6 ) ,  namely 

= N(k)  = NR(k) + NI (k) (13) 

where N R ( k )  and iNI(k) are the real and imaginary parts of 
N(k) .  Using Eqs. (A-21) and (A-23) of the Appendix we obtain 

(14) 
1 q C l i  + C2$ - sin C$i(c,i + C4J 

i @i(C,i - C4J - sin t CZi )  
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where 

siny,, 

sin y4,. c4i = - 

I(N-1) 

y,i - 71 -- - 
- [;. 4 

When q5i are uniformly distributed, the evaluation of NR(l) 
and N,(l) is straightforward. It is shown in the Appendix that 
NR(l) and N,(l) are processes with zero mean, and variances 
(expressed in dB2) of 

var (N,(l)] = ui = (--!-) ( K , ~ i n y ~ i ) ~  
8~~ all  i 

x [(.ji - Cqi)2 t (--Cli t CZi)2 1 

In order to gain more insight into the operation of the Con- 
scan algorithm, we can think of the FFT as digital filtering. In 
this context, we can compute the contribution to the variances 
u2 and in terms of the ith modulation component of a 
R? spinning spacecraft and the FFT’s transfer function, namely 

where the transfer functions for the real and imaginary parts 
are obtained from Eq. (16), namely 

F i ( i )  = (-!-) [(Cli t C2i)2 + (C3i + C4i)2] 
8 N2 

F’(i) = (-) 1 [(C3i - C4i)2 t (-cIi t C2J2] 
8 N2 

Figure 2 shows the frequency response of F 2 ( f )  = Fl(f) 
t F;”(f) ,  the magnitude squared of the first FFT’s component. 
Note that the transfer function of the FFT processing is peri- 
odic. The period equals I ,  which is the AGC sampling time 
(usually 1 sec). So, the frequencies& (fi = oi/2n), which are 
multiples of 1/1, hurt the Conscan estimator the most. Minima 
of F 2 0  are 23 dB below the maximum. Note that F 2 ( f )  
has nulls at multiples of 1/T. Figure 2 also shows the ratio of 
FiGf)/F’ (f) versus frequency. 

With this information about the properties of the transfer 
function of the FFT algorithm, we can select the Conscan period 
T so as to minimize the impact of unwanted frequencies, 
wi. Ideally, we would like to  have freedom in selecting both 
the AGC sampling time I ,  and the Conscan period T ,  so that 
the unwanted frequencies will fall at the nulls or where the 
FFT’s frequency response is minimal. For example, we would 
like to  select the sampling time I so that the following condi- 
tion is met 

where w1 is the most significant component of the spin rate 
and n is an integer. 

D. Effect of AGC SNR on the Pointing Error 

Again let P, be the nominal carrier power reaching the 
ground receiver and SNR be the signal-to-noise ratio in the 
AGC loop. Then the noise variance in the AGC loop will be 
ui = P,/SNR. The instantaneous signal plus thermal noise 
power of the j th  AGC sample will be 

ri = 20.0 log (ct G j )  (19) 
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where VNj is a zero mean Gaussian random variable with vari- 
ance u;. The standard deviation of the ri sample (assuming 
that only thermal noise is present) will be approximately - 7 e -I- ON) 

ur 20.0log 1 ~ 1 (dB) (20)  

It is shown in the Appendix that the variances of the real 
and imaginary parts at the output of the FFT in terms of the 
variance of the AGC thermal noise are 

2 = u;t = - ",' (dB2) "R r 2N 

The overall variances at the output of the FFT will be simply 
the sum of the individual variances due to spacecraft spin and 
receiver thermal noise, namely 

where u i s  and a;s are given by Eq. (16) and u i r  and 
Eq. (21). 

by 

E. Conscan Closed-Loop Model 

So far we have discussed the open-loop estimation of the 
pointing errors. In order to  proceed with this analysis, we 
define the closed-loop pointing errors in cross-elevation and 
elevation as follows 

where 3 and are the Conscan estimates of the pointing 
offsets 8, and Be, respectively. We will treat all of the above 
angles as continuous variables of time and model the DFT as 
an analog multiplication and integration. This approach is 
allowable because the AGC sampling time I is much smaller 
than the Conscan update time, T = NI. Being in closed-loop, 
we substitute QX for Ox and @e for Be in the third term of 
Eq. ( 6 )  and rewrite that term 

2KrR [ ?  COS - 

in vector notation as follows: 

sin $1 

The DFT algorithm (modeled here as an analog operation) 
multiplies this input by the vector 

IcosT 2nt i s i n z l  
N 

L J 

integrates from 0 to N ,  and divides the result by N .  This opera- 
tion is represented schematically below. 

where 

The factor of 112 results from the multiplication of a cosine 
by a cosine and a sine by a sine. Double frequency terms are 
integrated to zero. Thus, the DFT operation for a large N can 
be modeled as an integrate-and-dump device with the follow- 
ing transfer function in the hybrid s/z-domain. 

In the feedback path of the Conscan loop, the estimated 
errors in antenna pointing are scaled down by a factor G, and 
the antenna pointing corrections, gX and e, are obtained. This 
corresponds to the following set of difference equations 

where & and are the estimates of Ox and O,, respectively. 
The subscript n indicates the nth scan period. In Fig. 3 the 
above difference equation has the following zdomain transfer 
function (summer) 

A 

Because and Be are modeled as continuous variables of 
time, we need to  convert the discrete variablesxx(z) and&(z) 
to  their continuous counterparts, namely, we need a Digital-to- 
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Analog converter (D/A) in the feedback 
model. The transfer function for the D/A is 

(1 - e - s N )  
S 

where e-sN = z-' 

path of our loop Assuming then the noise sample N,,+l(l) is independent of 
Nn( l )  for all n, it can be shown that the steady-state closed- 
loop variances of the pointing error are 

By combining the above elements into a block diagram, 
Fig. 3 is obtained. Now the above hybrid s/z-loop model may 
be converted to a z-domain model. Neglecting for the moment 
the noise termN(z),  we see by inspection of Fig. 3 that 

Taking the z-transform of Eq. (29) and simplifying, we obtain 

where u i  and ujare  the open-loop variances at the output of 
the FFT and are given by Eq. (22). 

Before moving to the next topic it should be noted that the 
transfer function H(z) of the Conscan loop, Eq. (32), has a 
single pole at z = 1 - G. The stability criterion requires that 
11 - GI < 1 in order for the pole to remain inside the unit 
circle. This puts an upper bound on the loop gain which has 
to be less than 2. Control theory predicts that the Conscan 
loop will have a bounded steady-state error to a ramp or 
velocity input. In practice, the velocity components of the 
pointing axis are compensated by predicts, while Conscan 
compensates for step pointing errors. 

where the asterisk denotes the z-transform operation. F. Pointing Jitter and Pointing Loss 
Equation (4)  relates the ground antenna pointing loss to the 

pointing error. In order to  estimate the closed-loop pointing 
loss, we substitute @, for 8, and @e for Be in Eq. (3). Then 
we insert (3)  into Eq. (4) and integrate over one Scan 
period to obtain 

With this transformation, Fig. 3 has the equivalent block 
diagram of Fig. 4,  which is entirely in the z-plane. From Fig. 4 
we see that the overall Conscan open loop transfer function is 

and the closed-loop transfer function is 
where and rpe are random variables with zero mean (assum- 
ing a step input) and the variance is given by Eq. (35). Invok- 
ing the central limit theorem, we can assume that the closed- 
loop pointing errors @, and @e have a Gaussian distribution. 
Being derived from quadrature processes, they are mutually 
independent. With the above assumptions, we take the ex- 
pected value of Eq. (36) and obtain the closed-loop pointing 
loss, L ,  namely 

- G Y(z) - G(z)  - H(z) = - - (32) [l t G(z)] [z t (G - l)] py 
Having obtained H(z), we now need the following integral 

I1 = 1 (j H(z)H(z-')$ 

Using Table 111 of [ 2 ] ,  it is found that 

G I1 =- 
(2 -a 

(33) 

(34) = Kr(R2 t 0,' t u,") (dB) (38) 
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G. Transient Response 

Eq. (23) and talung the expected value, it can be shown that 
Let O x n  = exl and Oen = Bel for all n. Inserting Eq. (26) in 

(39) 

(43) 

(44) 

where y represents the relative angle offset between the AGC 
table of the antenna scan cycle. In Eq. (44), a fcur-quadrant 
arc tangent is computed. Finally, the estimates of the pointing 
error are computed 

e, = MAG . C ~ ~ ( A N G )  
(45) 

0, = MAG * sin(ANG) 

r A 1 - G  (O<r<l )  T h s  revised estimation algorithm for the pointing error shows 
a slight crosscoupling between Ox and 8,. In this simulation, in 
order to mimic more closely an actual antenna, the antenna 
pointing corrections were done gradually in an interval of eight 
to ten samples with a slight overshoot before the final point. 

We now define the time constant, r ,  as the time in seconds 
that it takes for pointingerror 4,, to decay to the value of &,/e ,  
where e is the base of the natural logarithm. Solving for the 
number of Conscan periods, n-1, necessary for el  to decrease 
by l/e and for the corresponding 7, it can be shown that Figures 6 through 9 display the results of the simulation. 

The variances of the pointing error were averaged over 550 
Conscan periods. The computer-simulated results agree very 
closely with the equations derived in this analysis. 

1 
(41) n - l =  -- 

In (r) 

~ 

and 

T 

Figure 5 depicts typical 7 values for DSN antennas. 

The following values were used in the simulation: K r R z  = 
0.1 dB for both the 64- and 70-m antennas; scan period T = 32, 
64, and 128 sec; and sampling time I = 1 sec. Conscan loop 
gain G = 0.05,0.3, and 0.6. P, = -145 dBm, and the AGC loop 
SNR was between 20 and 50 dB. (42) 

For the Galileo spacecraft, the effect of the spin on the 
transmitted signal was modeled as follows (see Eq. 2) 

111. Computer Simulation CKicos(wit  + Gi) = K,aZ (dB) (46) 

A. Simulation Model 
where a ,  the effective offset from the correct pointing of the 
spacecraft antenna, is defined as A computer program named CONSCAN.FOR using an FFT 

subroutine was written in order to check the above analysis. In 
our simulation, values typical for the Voyager and the Galileo 
missions were used. 

the DSN stations the FFT computation can start at any time 

samples, the estimates of the pointing error were computed 

a(t)  = [ a :  + a i  +a: + 2 a 1 a z c o s ( w l t + ~ 1 )  

In the actual implementation of the Conscan algorithm at 

inside a Conscan period. In order to account in our simulation 
for this time shift between the FFT reference point and AGC 

with the following modification to  Eq. (12) 

+ 2a,a,cos(wzt + @J 

+ 2aza3cos (w,t + #,) (47) 
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Here D. Predicted Performance for Galileo 

In the case of Galileo, the Conscan performance is affected 
by both thermal noise in the receiver and the wobble and nuta- 
tion reflected in the spacecraft signal. Figure 9 indicates that 
the thermal noise is the dominant effect when the ACC loop 
SNR is lower than about 30 dB. But the wobble and nutation 
effect dominates when the AGC is higher than 30 dB. As a 
result, the pointing error can be reduced by increasing the 
AGC SNR below 3o dB, but not beyond 30 dB. 

a1 = combined pointing error due to Earth-fitting error, 
spacecraft/Earth drift, and attitude determination 
error 

cr2 = pointing error due to nutation 

(Y, = pointing error due to  wobble, mechanical and electri- 
cal misalignments 

It should be noted that the Conscan period must be chosen 
carefully in order to avoid harmonic relationship with the 
wobble and nutation processes. In case both wobble and nuta- 
tion are present, the scan period of 64 sec should be avoided 
because its frequency, 0.0156 Hz, is very Close to the differ- 
ence between the wobble and nutation frequencies, 0.0162 Hz. 
Abnormal pointing errors were indeed observed in simulation. 

In our we made K ,  = 2cr1cr2 = 1 dB, K, = 
2a,cr ,  = 0.2 dB, and K ,  = 2cr2cr3 = 0.2 dB. Other variables are 
defined as follows: w1 = nutation spin rate, w2 = wobble spin 
rate, a3 & w 1  - w 2 .  The following values were assumed: 
wobble period T ,  = 19.048 sec (nominal or low spin rate); 
nutation period T, = 14.583 sec (T, ~ , / 1 . 3 ) ; ~ ,  = -77.5 dB/ 
deg2 (curve fit to  Galileo X-band antenna gain pattern). 

6. Simulation Results-Choice of Loop Gain and 
Scan Period 

From Figs. 6 through 9 we can make the following 
observations: 

Increasing the gain G decreases the time constant and, 
hence, the lock-up time, although it increases the pointing 
fluctuations and pointing loss (Figs. 6 and 7). This fact sug- 
gests the following operational strategy: choose a large gain 
value during lock-up, and a small gain value during tracking. 
This strategy has been successfully used with the Real-Time 
Combiner of the DSN Baseband Assembly. 

Increasing the scan period decreases the pointing jitter 
(Figs. 8 and 9). This effect is especially pronouncecj for 
Galileo which has larger pointing jitter due to spacecraft 
spin. Increasing the scan period, however, also slows down 
the pointing correction process. 

C. Simulation Versus Actual Performance for 
Voyager 

The simulation result is comparable with the observed 
antenna Conscan performance in supporting Voyager. Figure 8 
predicts a 1-sigma pointing error of 0.5 (128-sec scan) to 1.5 
mdeg (32-sec scan) for Voyager, assuming thermal noise 
35 dB below the carrier level in a 1-Hz AGC loop. In [3] the 
Conscan performance of the DSS 14 64-m antenna in pointing 
Voyager over 5 days in 1987 is reported (see Fig. A5 in [3] ), 
with statistics given in Fig. A6 for individual scans with a 
32-sec period. The standard deviation reported is 1.7 mdeg, in 
good agreement with our simulation result. 

E. Simulation Results Versus Predicted 
Performance 

Simulation results give slightly more conservative values 
for the pointing error variances than the ones predicted by 
the closed-form solution, Eq. (35). The possible reasons are 
(a) in our simulation, the lock-up transients have partially 
effected the statistics of the pointing error; and (b) an error in 
the phase offset y in Eq. (44) was deliberately introduced in 
our simulation in order to  approximate the actual pointing 
imperfections. 

The discrepancy can be illustrated with two cases. For 
Voyager, with T = 32 sec, SNR = 35 dB and G = 0.6, the 
standard deviation of the pointing error is 0.6 mdeg according 
to the closed-form solution and 1 mdeg according to the sim- 
ulation. For Galileo, with the same conditions, the standard 
deviation of the pointing error is 2 mdeg according to  the 
closed-form solution and 3 mdeg according to the simulation. 

IV. Conclusion 
A model has been developed to analyze and simulate the 

performance of DSN antenna Conscan as affected by the fluc- 
tuations in the receiver AGC signal. The effects of the receiver 
thermal noise and of the spinning spacecraft were analyzed 
and simulated. The simulation results agreed well with the 
observed performance of the DSS 14 antenna supporting Voy- 
ager. The simulation results show a standard deviation of 1.5 
mdeg at X-band with 32-sec scan for a 35-dB AGC SNR. Ob- 
served performance at DSS 14  [3] for Voyager under similar 
AGC SNR conditions was about 1.7 mdeg for individual 
scans. 
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The simulation results suggested that the Conscan loop gain 
and the scan period can be chosen to optimize the pointing 
performance. A higher gain and a shorter scan period can 
reduce pointing acquisition time at the beginning of the track. 
A lower gain and a longer scan period can reduce the standard 
deviation of pointing jitters, and, therefore, the loss, during 
track. 

The simulation result for Galileo indicated higher pointing 
jitter than Voyager because of the additional effect of space- 

The spacecraft effect is dominated by the ground receiver ther- 
mal noise effect for the AGC SNR below 30 dB and becomes 
dominant when the SNR is above 30 dB. Figure 9 predicts a 

I craft wobble and nutation on the ground receiver AGC signal. 

relative constant pointing error in the latter region. This region 
is typical for Galileo support when the carrier signal level is at 
least -155 dBm. 

The Conscan pointing error for Galileo under such condi- 
tions was between 1 mdeg (128-sec scan) and 4 mdeg (32-sec 
scan). The corresponding losses versus the standard deviations 
of pointing errors are given in Fig. 10. 

It was noted that the choice of a Conscan period for Galileo 
must avoid harmonic relationships with the Galileo wobble 
and nutation frequencies. The results of the analysis indicated 
that the 64-sec scan should not be used for Galileo when both 
wobble and nutation are present. 
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Fig. 1. Open-loop estimation of the pointing errors. 

Fig. 2. Total (Real + Imaginary) FFT Transfer Function and Transfer Function Ratio 
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Fig. 7. Transient response of pointing error simulation for Galileo 
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Fig. 9. Steady-state pointing error versus AGC SNR simulation for 
Galileo spacecraft. 
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Fig. 8. Steady-state pointing error versus AGC SNR simulation for 
Voyager spacecraft. 
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Appendix A 

Derivation of the Mean Value and Variance at the Output of DFT 

Let Dk be the Discrete Fourier Transform operator defined 
as follows 

= R(k )  = R,(k) t iR,(k) (A-2) 

where RR(k)  and R,(k) are the real and imaginary parts of 
R(k) ,  respectively. 

We want to find the mean value and the variance of R(k )  
for the following three cases 

S (-4-3) 

(-4-4) 
s c o s  (Y) 
Scos - t Gi for any nonrandom (A-5) 

N I .  so that K =-is an 
integer T: 

rT ) q and random G i ,  
uniformly distributed 

E W  A pS and var{S} U: (A-6) 

i si = 

where S is a random variable assumed to be constant during 
one Conscan period. And we define 

E{Dk(r)I p ( k )  = pR(k)+ipI (k)  (A-74 

I E{Dk(r)2} - p(k)2 = u2(k)  = u i  ( k )  t u;(k) (A-7b) 

A. Si = S 

Using Eq. (A-1) it is easy to  see that 

ps f o r k = O  

0 otherwise 

for all k 

1 C(R(k) = 

PI(k> = 0 

otherwise 
u i ( k )  = 

u f ( k )  = 0 for all k 

6. Si Periodic as Defined by Eq. (A-4) 

With K = NI/& = integer, we have 

s c o s  (27)- - - s c o s  (2y) - 

Using Eq. (A-1) we obtain 

2 
OS 

4 
- 

0 

u i ( k )  = 

u f ( k )  = 0 

for k = K 

otherwise 

for all k 

for k = K 

otherwise 

for all k 

(A-10) 

(A-1 1) 

(A-12) 

(A-1 3) 

(A-14) 

(A-1 5) 

(A-16) 

C. Si Periodic With Any Period Length and Phase Shift 

Let 

si = Scos(q!)+ (A-1 7) 

- 
= S kosGi cos (y) - sin (y)] (A-18) 
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sin y, 

sin y, 
Using E q .  (A-1) for the real part, we let w 1  = 2nI/q and 
w2 = 2nk/N. Then c, =- 

sin y, 
sin yd c4 = - 

i ( w ,  +wz ) N  

i (w,+w,)  

Note that Ci and y, (i = 1, . . . ,4) are functions of the variable 
k .  Repeating the above steps for the imaginary part of R(k )  we 

1 - e  
t 11 obtain 1 - e  

- sin#; Imag. 

R,(k) = ( l N )  - sin ' yo [ cos @i (C, - C4) - sin 4, (-C, + C2) 1 (A-19) 

But 

(A-23) 

and Assuming that @, is uniformly distributed in the interval 
{ 0,2n} ,  we obtain 

w N  

for all k (A-24) 1 - e  iwlN 

1 - e i ( w l - J Z )  

i [ ( w , ( N - l ) T w ,  I sin (+) ."R - - ."I = = e  
0, ?az) 

sin C ] 
(A-20) 

u i ( k )  = u i  (L) (sinyo)2 
8N2 

Using Eq.  (A-20) in Eq.  (A-19) and simplifying we obtain 
x [ (cl f C,)' + (C3 + C,)'] (A-25) 

(C, + C2) - sin@, (C, t C4)] 

u:(k) = u i  (i) (sin yo)' 
8N2 

(A-2 1 ) 

where 

cos Y, 
c, =- sin y, 

cos 7, 
c, = - sin y, 

x [(c, - c,)2 + (-c1 + c2),] (A-26) 

where again uz is the variance of S and other variables are de- 
fined in E q .  (A-22). 
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D. White Noise 

Assuming that the variance of each voltage sample due to 
(A-27) 

thermal noise is u,’, the variance of the sum of N samples will 
be Nu,’ . The FFT algorithm performs the N complex sums and 
divides the result by N .  Hence the total variance of the com- 
plex FFT output will be 

Since in our implementation of the DFT the output is split 
into its real and imaginary parts, the variance of each of them 
will be one-half of u,’ . 
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